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the highest probability. Principal information on both 
distributions is contained in the low-order moments. 
Furthermore, the uncertainty in the determination of 
moments increases with their order and decreases 
with the number of seminvariants used in the calcula- 
tion. Therefore, the weights should strongly reduce 
the influence of the moments of higher orders depend- 
ing on the index i. The weights should be smaller, 
the smaller the number of seminvariants used for the 
calculation of ~,L e m p  and the more restrictive the 
approximations used in the calculation of the corres- 
ponding theoretical distributions. The decrease in the 
weights* with the order of moments might be approxi- 
mately expressed by the coefficient (n !)-t 

Special seminvariants 

In the case of special seminvariants, which owing 
to the crystallographic symmetry may assume only 
two values, the distributions are fully described only 
by their first moments. Hence, the summation over 

* The weights should be properly modified when cumulants, 
standardized cumulants or other types of distribution characteris- 
tics are used. 

index i in (11) is omitted and the distribution-fitting 
coefficient is 

M = ~ )-', . t r ia l  t heor ' x2  
Wjk~[~L ljk -- ]'£ Ijk ) • (12) 

j k 

If centric cosine seminvariants are used, then 
/emp= oemp [compare with equation (7) of paper II] Ijk ~t ljk 
and the distribution-fitting coefficient M for one type 
of seminvariant may be written in the form equivalent 
to equation (19) in paper II: 

N : ~, Wj~I'+j" ntriai --~' +jpthe°r'~2J" (13) 
J 
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Abstrac t  

The proposed method of determination of a correct 
set of phases is based on a comparison between the 
trial and theoretical distributions of seminvariants 
using the Kolmogorov test. If the Kolmogorov test is 
restricted to a single region of magnitudes where only 
a small variance around the mean seminvariant value 
is expected, then the test is reduced to a simple rule. 
The smaller the number of  seminvariants differing sig- 
nificantly from the expected mean value, the more prob- 
able the set of  phases. In this simple form the Kol- 
mogorov test has been used since the very beginnings 
of direct methods. In spite of the fact that the method 
seems to be less efficient than the distribution fitting 
using the x 2 test [HMek (1984). Acta Cryst. A40, 

* Part III: Ha~ek (1984c). 
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340-346], its simplicity and low claim on computing 
time enables one to survey a large number of trial 
sets and so to increase the power of the method based 
on a combination of the Kolmogorov test with the x 2 
test, or with the low-order distribution moment test. 

1. Introduct ion  

In direct methods, a priori information on the struc- 
ture necessary for the phase-problem solution is 
usually represented by 'probability relations' between 
the structure factors, i.e. by the function form of the 
probability distributions of seminvariants. Of course, 
some methods extract only information on the most 
probable seminvariant values and do not account for 
the fact that the probability distribution defines also 
seminvariants which must greatly differ from their 
'ideal' value. This results in occasional failures of 
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such procedures to find a correct solution unam- 
biguously. 

A general method of phase-problem solution which 
makes possible full utilization of a priori  structure 
information hidden in the probability distributions 
of seminvariants has been reported in previous papers 
(Ha~ek, 1984a, b, c) denoted hereafter as papers I, II 
and III. The criteria of correctness of the phase set 
described therein are based on a comparison between 
the empirical probability distributions calculated for 
the trial set of phases and the corresponding theoreti- 
cal probability distributions (paper II) or on a com- 
parison of the respective low-order distribution 
moments (paper III). The third method for distribu- 
tion fitting, based on the Kolmogorov test, is outlined 
in this paper. 

2. Cumulative probability distributions of 
seminvariants 

In a manner analogous to § 2 of paper II, let the 
parameter space of the probability distribution 
P ( O ] R ~ , . . . ,  Rm)  be divided into regions of magni- 
tudes R t , . . . ,  Rm and intervals of seminvariant values 
O. Nuk  denotes the number of seminvariants of the 
kth type belonging to the j th region and the ith 
interval; Njk is the sum of NUk overall r intervals of 
O values, Njk = F~= l NUk. Then the values 

~ emp~ ~ Nijk/Njk (1) ujk 
i=1 

converge for Njk-~ oo to the empirical cumulative 
probability distribution of seminvariants. For the cor- 
rect phases and magnitudes, the empirical probability 
distribution is equal to the true cumulative probability 
distribution of seminvariants and, therefore, the ~mp J ujk 
values are unbiased and consistent estimates of the 
true cumulative probability distribution ~ t ~  (Bickel 
& Doksum, 1977). The trial cumulative distribution 
of seminvariants for any wrong set of phases cannot, 
in a statistical sense, fit the true cumulative distribu- 
tion of seminvariants better than the empirical one. 
Thus, the fit between the trial cumulative distributions 
and the corresponding theoretical estimate of the true 
cumulative probability distribution may be used as a 
criterion of the correctness of the trial phase set. 

According to the definition given above, G/~ernp J rjk for 
the last interval of seminvariant values is just unity. 
In the case of centrosymmetric structures the 
seminvariants may assume only two values and there- 
fore the distribution may be estimated by computing 

~ emp_ N l j k  / N j  k ljk -- 

values, converging for increasing number of 
seminvariants, and the correct set of phases to the 
true probability distribution of a positive sign of the 
respective product of the structure factors [.compare 
with equation (7) in paper II]. 

Suppose that the theoretically derived distribution 
of seminvariants is identical with the true distribution. 
If the size of intervals and regions tends to zero and 
the number of seminvariants in them tends to infinity, 
the ~emp . l u j  k values would correspond exactly to those 
of the theoretical cumulative probability distribution. 
In practice, of course, the intervals and regions must 
be chosen large enough to contain sufficiently high 
numbers of seminvariants. Therefore, the ~ o r  
values corresponding to the a~mp O, uj k values are com- 
puted using the relations (a), (b) or (c). 

(a) 
~theor 

ujk --" V-jk I ~ P k ( O I R l ,  . . . , R m )  d R y . . ,  d R  m d O ,  

(2) 
where the integration runs over all the first u intervals 
of 0 values, and over the jth region of magnitudes. 
The normalizing constant Vjk is 

Vjk = ~. Pk(O[R~,  . . . , Rm) dR~ . . .  d R m  dO,  

where integration proceeds over the whole jth region 
and all possible seminvariant values. 

(b) 

~theor .__ Af-I 
ujk - -~ '  ujk X Pk (OlR l t ,  . . . , Rmt), (3) 

I 
u 

where the summation runs over all N,,jk = ~i=l NUk 
seminvariants in the first u intervals contained in the 
jth region of magnitudes of the kth probability distri- 
bution. 

(c) 

~theor ~ f~theor 
ujk = ~ ijk , (4) 

i=l 

/-)theor where the relative frequencies VUk are given by 
equation (9) of paper II. 

o~theor The ~'~k value for the last interval of 0 values is 
equal to unity. Therefore, in the case of centrosym- 
metric structures, where only two intervals of 0 values 
are possible, the distribution in a single region of 

0~theor magnitudes is described by only one value "~jk - 

3. Kolmogorov test 

By the Glivenko-Cantelli theorem, 

0~emp- o~truel (5) DN = sup ~,o ~" ~,o ~" ~,o I 

converges for increasing sample size, N-~ oo, to zero 
in probability (Fisz, 1963). The Kolmogorov test 
based on this property enables us to reject the 
hypothesis that ~tr~a~=~tr~e in favour of the 
hypothesis ~tri,~ # ~tr~e for large values of DN. 

Considering that the numbers of seminvariants in 
the individual regions of magnitudes Njk remain the 
same for all the tested sets of phases, it is convenient 
in practice to replace the cumulative probabilities by 
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the cumulative numbers of seminvariants: 

N#k = ~,r ~trial (6) 
• " j k  ¢1 Ok 

~/h~or=  /~r GDtheor 
• ",jk~" Ok • (7) 

Suppose now that the theoretical distribution corre- 
sponds exactly to the true distribution of 
seminvariants, then a suitable random variable to test 
is 

Djk = sup, [.N'thk ~°r-)/'0k[. (8) 

Maximal admissible deviations, D~ it = 
I)¢'thk ~°r- )¢'Oklmax, at significance level 0.01, are depen- 
dent on the number of seminvariants Njk in the tested 
region; these are given in Table 1. 

The [.hr~ ° r -  ~/'rjk[ values for the last interval of 
values are identically zero because N ~  °r = )¢',jk = Njk, 
where /Vjk is the number of seminvariants in the jth 
region of the kth distribution. Therefore, only ( r -  1) 
first intervals of ~ values are tested for maximal 
differences between cumulative distributions. If in 
some region and interval the theoretical distribution 
does not correspond to the true distribution, then the 
critical values taken from Table 1 must be increased.* 

In the case of special seminvariants there are only 
two possible seminvariant values and also only two 
intervals. Thus, the number of seminvariants in the 
second interval is uniquely determined by the number 
of seminvariants in the first interval and in this case 

F~crit * The optimal values "-'sk have to be selected by experience for 
each type of theoretical distribution. 

nor ,  ~.,heo, "/¢'#klm~ o f  the Table 1. Critical values ~'jk = ~, Ok 
K o l m o g o r o v - S m i r n o v  test at the 0.01 significance level 

N j k  2 6 10 15 20 40 > 40 
D~ it 2 4 5 6 7 10 1 "63,f-~k 

only o n e  d i f f e r e n c e  O j k  = l/~rthe°r, I j k  - -  Nljk is t e s t e d  
against Table 1 for one region of magnitudes. For 
centrosymmetric structures the efficiency of the 
Kolmgorov test based on testing 

O j k  = Dthe°r-- ptrial 
* +jk  - -  +jk  max 

may be compared with that of the coefficient 
K y.. /ntheor ptrialx2/~, 

= WOk i, 1" +jk  - -  +jk ] I / . . ,  WOk 

used in the x 2 test [equation (19) in paper II] under 
a restrictive condition that the only contribution to 
the summation is a maximal difference, i.e. K ' =  

Dtheor ptrialh2 
,! +jk - -  ,t +jk  ] m a x .  ThUS, t he  Kolmogorov test is e x p e c -  

t ed  to have worse discriminative abilities than the x 2 
test, but its convenience may be seen in its simplicity. 

The author would like to thank Professor H. Schenk 
for helpful discussions and support of this work. 
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Abstract 

It has been shown that by measuring the angular 
dependence of X-ray diffraction scattering far from 
the Bragg peak, information on the structure perfec- 
tion of thin subsurface layers can be directly obtained. 
This is associated with the fact that the waves gener- 
ated in the crystal bulk compensate one another, and 

* Present address: Kurchatov Institute of Atomic Energy, 
Kurchatov Square 46, Moscow 123182, USSR 

the intensity of rocking-curve tails is due mainly to 
scattering in the subsurface layer. The typical thick- 
ness of a scattering layer is related to the deviation 
angle by a simple relationship: A z - "  Lextoo/a, where 
a is the deviation angle of the specimen from the 
exact Bragg position, tOo the diffraction maximum 
width, and Lex the extinction length. The method of 
three-crystal diffractometry permitted the observation 
for the first time with a conventional X-ray source of 
a distorted layer with a thickness of - 1 0  nm. 
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